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ABSTRACT

The literature on ensemble-based data assimilation techniques has been growing rapidly in past

decade. These techniques are being explored as possible alternatives to current operational anal-

ysis techniques. Ensemble-based assimilation techniques are typically comprised of an ensem-

ble of parallel data assimilation and forecast cycles. The background-error covariances are esti-

mated using the forecast ensemble and used to produce an ensemble of analyses. The background-

error covariances are flow-dependent and often have very complicated structure, providing a

very different adjustment to the observations than are seen in schemes such as 3-dimensional

variational assimilation. Though computationally expensive, these techniques are easy to code,

since no adjoint nor tangent-linear models are required, and tests in simple models suggest that

dramatic improvements over existing operational methods may be possible.

A review of the ensemble-based assimilation is provided here, starting from the basic concepts

of Bayesian assimilation. Without some approximation, Bayesian assimilation is computation-

ally impossible for large-dimensional systems. Under assumptions such as Gaussianity and lin-

earity of error growth, the discrete Kalman filter equations are derived. Kalman filter techniques

are still computationally impractical without further simplification. A derivation of the more

computationally tractable ensemble Kalman filter (EnKF) is then provided. As ensemble size

increases, the mean and covariance estimates from the EnKF converge to those produced by the

Kalman filter.

Techniques for making the EnKF more accurate and more computationally efficient on parallel

computers are discussed, and an example of ensemble data assimilation in a dry general circula-

tion model is provided.
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1. INTRODUCTION

The purpose of this article is to introduce the reader to promising new experimental meth-

ods for geophysical data assimilation involving the use of ensemble forecasts (e.g., Evensen

1994, Evensen and van Leeuwen 1996, Houtekamer and Mitchell 1998, 1999, 2001, Burgers et

al. 1998, van Leeuwen 1999, Lermusiaux and Robinson 1999, Anderson and Anderson 1999,

Hamill and Snyder 2000, 2002, Keppenne 2000, Mitchell and Houtekamer 2000, Heemink et al.

2001, Hamill et al. 2001, 2003, Anderson 2001, Pham 2001, Verlaan and Heemink 2001, Kep-

penne and Rienecker 2002, Whitaker and Hamill 2002, Tippett et al. 2002, Mitchell et al. 2002,

Hansen 2002). There is a natural linkage between data assimilation and ensemble forecasting:

ensemble forecasts (Toth and Kalnay 1993, 1997, Molteni et al. 1996, Houtekamer et al. 1996a)

are designed to estimate the flow-dependent uncertainty of the forecast; data assimilation tech-

niques require accurate estimates of forecast uncertainty in order to optimally blend the prior

forecast(s) with new observations. The intent is to demonstrate how these two endeavours may

be united, improving the quality of both initial conditions and ensemble forecasts.

Four-dimensional variational analysis (4D-Var; Le Dimet and Talagrand 1986, Courtier et

al. 1994, Rabier et al. 1998, 2000) is now considered the state-of-the-art technique for atmo-

spheric data assimilation. It is thus worth asking up front why it may be worthwhile to consider

such a different technique. Will ensemble-based assimilation methods produce more accurate

analyses? For the time being, we don’t know. 4D-Var is relatively well established. Ensem-

ble methods have shown to have great promise in simple models, but they are computationally

expensive, and testing in more complex ones has really only been started within the last few

years by isolated researchers. Hence, comparisons of ensemble methods and 4D-Var are lack-

ing. However, there are reasons to suspect that direct comparisons ensemble methods may have

some potential advantages relative to 4D-Var.

In 4D-Var, we typically seek to find a model trajectory that best fits the observations over

some recent period of time, perhaps the last 6-24 h. The model state at the end of this time win-

dow is the control initial condition around which an ensemble of forecast initial conditions may
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be generated. The European Centre for Medium Range Weather Forecasts (ECMWF) has noted

dramatic improvements in the accuracy of their analyses and subsequent forecasts in the last 5

years, in part due to the use of 4D-Var. But 4D-Var, at least as currently implemented, still has

drawbacks. Typically, the forecast model dynamics are a strong constraint (Courtier et al. 1994;

but see Bennett et al. 1996 for an alternative); conqsequently, the accuracy of analyses from 4D-

Var is constrained by the accurate of the forecast model used. If the forecast model used in this

4D-Var does not adequately represent the true dynamics of the atmosphere, model error may be

significantly large, and 4D-Var may fit a model trajectory that was significantly different than

the trajectory of the real atmosphere during that time window. Such problems were suggested

in tests with the operational version of 4D-Var at ECMWF (Rabier et al. 2000); when data was

assimilated over 6 or 12 h windows, 4D-Var outperformed 3D-Var, but not when longer assim-

ilation windows were used. Other limitations may include the difficulty of generating an accu-

rate model of background-error covariances used in 4D-Var (Courtier et al. 1994) and the costs

of coding, maintaining, and executing accurate tangent-linear and adjoints models. In contrast,

there is (at least conceptually) a way to include the effects of model errors directly in ensemble

techniques. Also, no adjoint nor tangent-linear codes are required, and ensemble techniques are

designed to produce an accurate model of background-error covariances. Ensemble-based tech-

niques also produce an ensemble of analyses, making them especially attractive for ensemble

forecasting applications. However, ensemble-based techniques are computationally expensive,

and they are relatively new and not as well understood. Whether the advantages of ensemble

techniques can be leveraged to produce reduced-error analyses for operational weather forecast

models is an open research question that will be explored in coming years.

Rather than launching into the specifics of recently proposed ensemble-based assimilation

techniques, in this paper we will take a step back and try to motivate their use by quickly de-

veloping them from first principles, noting the approximations that have been made along the

way. This will take us from full Bayesian data assimilation (section 2), which is conceptually

simple but computationally prohibitive, to the Kalman filter (section 3), somewhat of a simpli-
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fication, to the ensemble Kalman filter (section 4), which is more computationally tractable and

perhaps more accurate. We will then discuss some of the algorithmic techniques and the lessons

learned from preliminary experiments with ensemble-based data assimilation systems in sim-

ple models (sections 5-8). The reader should also note that another contemporaneous review

paper on ensemble-based data assimilation is available (Evensen 2003). This paper provides

less background material on Bayesian assimilation and the roots of the Kalman filter, but it pro-

vides a wider review of the currently discussed ensemble-based assimilation approaches, a more

theoretical examination of the treatment of model errors, and a wide array of references to the

ensemble-based assimilation in the oceanographic literature.

In subsequent discussion we also will assume that the atmosphere state, which is of course

a continuum, can be adequately described in discretized fashion, perhaps by the values of winds,

temperature, humidity, and pressure at a set of grid points.

2. BAYESIAN DATA ASSIMILATION

Conceptually, the atmospheric data assimilation problem is a relatively simple one. We would

like the best estimate of the probability density function (pdf) for the current atmospheric state

given all current and past observations. Much of the material in this section follows the work

of Jazwinski (1970). If the reader is interested in further material on the subject, Lorenc (1986)

provides a formulation of data assimilation in a Bayesian context, and Talagrand (1997) provides

an excellent review of the data assimilation and in particular, the Kalman filter discussed in Sec-

tion 3. Cohn (1997) provides a more rigorous statistical basis for the problem. We attempt here

to use the minimum math possible to guide the reader along the path from Bayesian data assimi-

lation to the ensemble Kalman filter.

Assume the following notational conventions. The random variable for the model state is

denoted by capital letters, while the possible values that they may take on are denoted by small

letters. Generally, boldface characters will denote vectors or matrices, while use of the itali-

cized font denotes a scalar. Thus, if we use the letter “x” to denote the model state, Xt indicates
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the random vector denoting the true model state at time t, and xt = [xt(1); : : : ; xt(n)] denotes a

specific n-component vector value. Also assume we have a collection of observations  t. This

vector includes observations yt at the most recent time as well as observations at all previous

times  t = [yt;  t�1], where  t�1 = [yt�1; : : : ; y0]. There are Mt observations at time t, i.e.,

yt = [yt(1); : : : ; yt(Mt)]. Let fXt
(xt) be a multivariate probability density function, defined such

that Pr(a � Xt � b) =
R
b

a
fXt

(xt) dxt. Hereafter, we will use the substitute notation P (Xt = xt)

for fXt
(xt).

Formally, the problem we seek to solve is the following: P (Xt = xt j  t). That is, we’d like

the best probability density estimate of the current atmospheric state given the current and past

observations. Bayes’ Rule tells us that this quantity can be re-expressed as

P (Xt = xt j  t) / P ( t j Xt = xt) P (Xt = xt): (1)

Bayes’ Rule is usually expressed with a normalization constant in the denominator on the right-

hand side of (1); for simplicity, we have dropped that and assume that when coded, the user en-

sures that probability density integrates to 1.0.

Let us make one hopefully minor assumption: observational errors are independent from

one time to the next. Hence, P ( t j Xt = xt) = P (yt j Xt = xt) P ( t�1 j Xt = xt). This

may not be true for observations from satellites, where instrumentation biases may be difficult to

remove. Also, errors of observation representativeness (Daley 1991) may be flow-dependent and

correlated in time. But under this assumption, (1) is equivalent to

P (Xt = xt j  t) / P (yt j Xt = xt) P ( t�1 j Xt = xt) P (Xt = xt): (2)

By Bayes’ Rule again, P ( t�1 j Xt = xt) P (Xt = xt) / P (Xt = xt j  t�1). Hence, (2) simplifies

to

P (Xt = xtj  t) / P (ytj Xt = xt) P (Xt = xtj  t�1): (3)

In principle, equation (3) is elegantly simple. It expresses a recursive relationship: the “poste-

rior,” the pdf for the current model state given all the observations, is a product of the the proba-

bility distribution for the current observations P (yt j Xt = xt) and the “prior,” P (Xt = xt j  t�1)
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also known as the “background.” The prior is the pdf of the model state at time t given all the

past observations up to time t� 1.

Typically, the prior will have been estimated in some fashion from a cycle of previous data

assimilations and short-term forecasts up to the current time; approximations of how this may be

computed will be discussed in following sections. The expression P (yt j Xt = xt) may be con-

fusing: a set of observations are provided, so why should this expression be probabilistic? It is

perhaps helpful to think of this term as representing the probability of encountering some partic-

ular set of observations (not necessarily the ones actually observed) given that the true state is xt.

Suppose we have an operator H that converts the model state to the observation locations, vari-

ables, and types. Accordingly, we assume that the observations are the converted true state plus

error: yt j (Xt = xt) = Hxt + �. Let
D
�
E

denote the expected value. One can readily show that

if
D
�
E

= 0: and
D
��T
E

= R, then P (yt j Xt = xt) � N (yt;R), that is, it can be represented by a

normal distribution with mean yt and observation-error covariance R (Cohn 1997, p. 265).

Let’s now demonstrate the update step of Bayesian assimilation with a simple example.

Suppose we have an estimate of the prior P (Xt = xt j  t�1) for a two-dimensional model state.

This was produced by assimilating all prior observations up to and including time t � 1 and es-

timating in some manner how that pdf has evolved in the time interval between t � 1 and t. We

now want to update the pdf given a new scalar observation y, which in this example is observ-

ing the same quantity as the first component of the state vector measures. The pdf for the ob-

servation P (yt j Xt = xt) is assumed to be distributed normally about the actual observation,

� N (yt; �
2). Here, let yt = 58 and �2 = 100.

Selected contours of the prior are plotted in Fig. 1(a); as shown, the prior is bimodal. The

shape of the marginal prior distributions P (Xt(1) = xt(1) j  t�1) and P (Xt(2) = xt(2) j t�1) are

plotted on each axis in solid lines. The dashed line denotes the observation probability distribu-

tion P (yt j Xt = xt). This probability varies with the value xt(1), but given xt(1) is the same for

any value of xt(2). The updated posterior distribution is computed using (3) and is shown in Fig.

1(b). Note that the assimilation of the observation enhanced the probability in the lobe overlap-
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ping the observation distribution and decreased it in the other lobe. Overall, the posterior distri-

bution is more sharp (specific) than the prior, as is expected.

Unfortunately, Bayesian data assimilation without some simplification is not practical for

real-world numerical weather prediction applications. One problem with modeling a compli-

cated pdf in higher dimensions is the “curse of dimensionality” (e.g., Bellman 1961, Hastie et

al. 2001). Were one to try estimate the probability density in a higher-dimensional space using

a small ensemble, one would find that the model of probability was very poor unless simplifying

assumptions about the form of the distribution were made. Even were this problem surmount-

able, the computational cost would be extravagant. In the prior example we evaluated the prob-

ability density on a 100�100 grid. Suppose a similarly complicated structure for the prior ex-

isted in 100 dimensions. Then if we were to keep track of joint probabilities on a similar grid

for each dimension, this would involve evaluating and modifying 100100 density estimates. Such

computations are already prohibitive for a 100-dimensional model state; the problem becomes

incomprehensible for model states of O(107). Clearly, some simplification is required.

3. THE KALMAN FILTER

a. The Discrete Kalman Filter

Non-normality of the prior such as the bimodality in Fig. 1(a) is typically assumed to be

uncommon in atmospheric data assimilation. The error in the prior is commonly assumed to be

normally distributed, is assumed to be relatively small compared to the error of a random model

state, and is assumed to grow linearly over a short period of time. These assumptions may be in-

appropriate for moisture, cloud cover, and other aspects of the model state that may be very sen-

sitive to motions at small scales, where the time scale of predictability is small and errors grow

and saturate rapidly. But let us assume normality and linearity of error growth. Then Bayesian

data assimilation computations can be simplified into an algorithm known as the Kalman filter

(Kalman 1960, Kalman and Bucy 1961, Jazwinski 1970, Gelb 1974, Ghil 1989, Cohn 1997, Ta-

lagrand 1997). There are two basic parts of the Kalman filter, an update step, where the state
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estimate and an estimate of the forecast uncertainty are adjusted to new observations, and a fore-

cast step, where the updated state and uncertainty estimate are propagated forward to the time

when the next set of observations become available. The forecast of the uncertainty takes into

account the flow-dependent rate of growth of errors and the uncertainty of the forecast model it-

self. We will start by considering the update step, and later considering the forecast step.

We start by making the following assumptions:

P (Xt = xt j  t�1) � N (xb
t ;P

b
t ) / exp

"
�

1
2

(xt � xb
t )TPb

t
�1

(xt � xb
t )

#
: (4)

That is, the probability density of the prior is normally distributed with known mean background

xb
t and background-error covariance matrix Pb

t . Similarly, assume that the observations are dis-

tributed normally with mean yt and covariance R:

P (yt j Xt = xt) � N (yt;R) / exp

"
�

1
2

(Hxt � yt)
T R�1(Hxt � yt)

#
: (5)

As before, H is a linear “forward” operator that converts the model state to the observation type

and location. Applying (3),

P (Xt = xt j Ψt =  t) / exp

"
�

1
2

(xt � xb
t )T Pb

t
�1

(xt � xb
t )�

1
2

(Hxt � yt)
TR�1(Hxt � yt)

#
: (6)

Maximizing (6) is equivalent to minimizing the negative natural log of (6), i.e., to minimizing

the functional J (xt) according to

J (xt) =
1
2

"
(xt � xb

t )T Pb
t
�1

(xt � xb
t ) + (Hxt � yt)

TR�1(Hxt � yt)

#
: (7)

This functional is a common starting point in the derivation of many assimilation schemes, from

the Kalman filter to 3-dimensional variational assimilation (“3D-Var;” e.g., Lorenc 1986, Par-

rish and Derber 1992). We would like to choose the value that minimizes this functional, pro-

viding a maximum-likelihood estimate of the state which blends the new observations and the

prior. Let’s call this best fit state the “analysis,” or xa
t . xa

t can be found by the differentiating the

functional in (7) with respect to xt, setting the result equal to zero, and proceeding with some

manipulation. A full derivation is provided in Appendix 1. The resulting “update” equations are

xa
t = xb

t + K(yt �Hxb
t ); (8)
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where

K = Pb
t HT(HPb

t HT + R)�1: (9)

The optimal analysis state xa
t is estimated by correcting the background xb

t toward the “observa-

tion increment” yt � Hxb
t , weighted by the Kalman gain matrix K. In K, Pb

t HT represents the

covariances between the background state and the background state converted to observation lo-

cation and variable type; HPb
t HT represents the background-error covariance expressed at the

observation location expressed in the units of the observations. The effect of the K is to use the

observation increments to correct the background at relevant surrounding grid points. On aver-

age, the corrections are typically larger for grid points near to the observation location than for

grid points far from the observation location. However, the appeal of the Kalman filter relative

to an analysis scheme like 3D-Var is that the structure of the analysis increments xa
t � xb

t can

be quite complicated. This structure depends on the background-error covariances, which are

affected by the corrective action of previous observations on previous forecasts as well as the

dynamics of error growth since the last update. We will provide some examples in section 8 of

complicated background-error structures in the context of an ensemble Kalman filter.

The basic statistics of the Kalman filter update can be understood if one considers a one-

dimensional state vector updated to a single observation. Assume H=1. Under these assump-

tions, (8) simplifies to

xa
t = xb

t �
Pb

t

Pb
t + R

(yt � xb
t )

=
R

Pb + R
xt

b +
Pb

Pb + R
yt

: (10)

The analysis state thus is a weighted linear combination of the background and the observation

(Daley 1991). The smaller the observation error is relative to the background, the more the anal-

ysis is drawn toward the observation. Analogies for multiple dimensions will be discussed in

later sections.

Equations (8) and (9) indicate how to predict the most likely state, but the accuracy of these

calculations depends on the accuracy of Pb
t and R. For atmospheric data assimilation, the latter,

R, is usually derived from extensive calibration and validation field experiments. Error statis-
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tics for R are usually assumed to be independent of the flow; the same error statistics are used

for different observations of the same type, regardless of location, time, and synoptic conditions.

Background-error statistics are explicitly updated in the Kalman filter. Given Pb
t , R, and the ob-

servation locations (implied in H), the analysis-error covariance Pa
t is predicted. A forecast is

then made of how analysis-error covariances will evolve in time until the next assimilation cycle.

The equation for the expected Pa
t is

Pa
t = (I�KH)Pb

t

= Pb
t �KHPb

t

= Pb
t � Pb

t HT(HPb
t HT + R)�1HPb

t :

(11)

The derivation of this is also provided in Appendix 1.

The form of (11) indicates that the analysis-error covariance is a correction to the back-

ground error covariance. The magnitude of covariances are reduced, with the amount that they

are reduced reflected in KHPb
t . If we consider the one-dimensional system again as in (10), we

find that

Pa
t = Pb

t � Pb
t

Pb
t

Pb
t + R

= Pb
t

 
R

Pb
t + R

!
:

(12)

Hence, the smaller the magnitude of R (the more accurate the observation) relative to Pb
t , the

greater the fractional reduction of error covariance.

Given xa
t and Pa

t , we will need to evolve the expected analysis and the covariances forward

to produce an estimate of background-error covariances at time t + 1. In the discrete Kalman

filter, we suppose that the true model state evolves according to the equation

xt+1 = Mxt + �: (13)

That is, the forecast evolution can be expressed as the sum of a linear operation on the current

model state Mxt plus an unknown error �, also known as the “system noise.” M is an n � n

matrix, often called the transition matrix between times t and t + 1. Since we describe the dis-

crete Kalman filter only to motivate use of the ensemble Kalman filter, algorithmic details like
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the method of calculation of M will be skipped; these details are not crucial to the understand-

ing of ensemble filters; for more details, see, for example, Le Dimet and Talagrand (1986) and

Lacarra and Talagrand (1988). � is assumed to have an expected value of zero
D
�
E

= 0 and to be

uncorrelated in time, with expected “model error” covariance Q :
D
�p�

T
q

E
= QÆpq where Æ is the

Kronecker delta, and p and q denote two assimilation times. In practice, accurately determining

even the time-averaged statistics of Q may be quite complicated (Cohn and Parrish 1991, Daley

1992, Dee 1995, Blanchet et al. 1997).

Given our model in (13), if we are looking for the best estimate of the evolution of the mean

state (e.g., Talagrand 1997), this is simply (13) without the noise term:

xb
t+1 = Mxa

t : (14)

We also require an estimate of the background-error covariances at the next assimilation

time. Assuming that the system noise is uncorrelated with the tangent-linear dynamics,
D

M(xa
t �

xt) �T
E

= 0, using (13) and (14) we get

Pb
t+1 =

D
(xb

t+1 � xt+1) (xb
t+1 � xt+1)T

E
=
D

(Mxa
t �Mxt � �) (Mxa

t �Mxt � �)T
E

=
D

(M(xa
t � xt)� �) (M(xa

t � xt)� �)T
E

= MPa
t MT + Q

= M (MPa
t )T + Q:

(15)

Given an operator M, this is how analysis-error covariances are evolved in the discrete Kalman

filter.

b. The extended Kalman filter

Before considering ensemble data assimilation methods, we touch briefly on an extension

to the discrete Kalman filter called the extended Kalman filter, where some of the assumptions

of linearity are relaxed (Jazwinski 1970, Gelb 1974, Gauthier et al. 1992, Bouttier 1994). First,

suppose the assumption of linearity in (13) is a poor one; perhaps were one to use a fully nonlin-
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ear model operatorM, i.e.,

xt+1 =Mxt + �; (16)

then � would be much smaller. Accordingly, in the extended Kalman filter, one assumes that the

mean state will be evolved according to

xb
t+1 =Mxa

t (17)

instead of using (14). If differences xa
t � xt are small, then the evolution of these difference

should be approximately linear:

Mxa
t �Mxt 'M(xa

t � xt); (18)

where here M is the Jacobian matrix ofM: M = @M
@x

.

Let’s also relax the restriction that the forward operator H in (5) be linear. We replace it

with a (perhaps nonlinear) H. Again, we presume that differences like xb
t � xt are small enough

so that the innovation vector yt�Hxb
t = Hxt�Hxb

t + � can be approximated with H(xt� xb
t ) + �,

where now H = @H
@x

.

Given these relaxed assumptions, one can proceed to derive an alternate form of the Kalman

filter update equations. The derivation of these is beyond the scope of this note but is discussed

in Jazwinski (1970) and Gelb (1974). We will be content here to simply note the changes. In

addition to assuming that the mean state is evolved nonlinearly in (17), the update equations is

changed. (8) and (9) are replaced by

xa
t = xb

t + K(yt �Hxb
t ); (19)

where

K = Pb
t HT(HPb

t HT + R)�1: (20)

Covariance propagation is done as in (15).

c. Considerations in use of Kalman filters
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Though Kalman filters provide a dramatic reduction in the computational cost relative to

full Bayesian data assimilation, for a highly dimensional state vector, the computational costs

in weather prediction models may still be extravagant. Consider the last line in (15). For an

n-dimensional model state vector, it will require 2n applications of M to forecast the error co-

variances. Some reductions of computational expense may be possible. For example, there have

been suggestions that this computation may be more practical if the tangent-linear calculations

are performed in a subspace of the leading singular vectors (Fisher 1998, Farrell and Ioannou

2001).

There is also the potential disadvantage of the assumption of linearity of error growth. While

errors for large-scale variables may reasonably be assumed to grow linearly over a typical period

between assimilation cycles of 3-6 h, some aspects, especially moist thermodynamic variables,

may have errors which saturate on this time scale. Also, if observations are not regularly avail-

able, error covariances estimated with tangent-linear dynamics may grow rapidly without bound

(Evensen 1992, Gauthier et al. 1993, Bouttier 1994).

Much more can be said about the Kalman filter, such as its equivalence to 4D-Var under

certain assumptions (Li and Navon 2001), the manner of computing M, iterated extensions of

the basic extended Kalman filter (Jazwinski 1970, Gelb 1974, Cohn 1997), and the properties of

its estimators (which, in the case of the discrete filter, if assumptions hold, provide the Best Lin-

ear Unbiased Estimate, or BLUE; see Talagrand 1997). These Kalman filters, however, are here

but stepping stones toward the assimilation method we want to focus on, the ensemble Kalman

filter.

4. THE ENSEMBLE KALMAN FILTER

Many research groups have sought practical remedies for the computational expense of the

Kalman filter. One promising approach is a technique that has been dubbed the ensemble Kalman

filter, or “EnKF.” The EnKF’s modern roots go back to Evensen (1994), though similar ensem-

ble filters have been used for engineering and aerospace applications as far back as the 1960’s
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(Potter 1964, Maybeck 1979). Here, we will provide a derivation of the EnKF. The subsequent

sections will describe more fully some practical algorithmic details concerning how to imple-

ment ensemble filters as well as some demonstrations of their usefulness.

The EnKF is comprised of a set of parallel data assimilation and short-range forecast cy-

cles. Unlike the Kalman filter, the background-error covariances for the data assimilation are

estimated from a finite sample (typically 10 to perhaps a few hundred) of fully nonlinear short-

range ensemble forecasts. These ensemble forecasts start from a set of initial conditions that

were created by the previous update step in the EnKF. Like the Kalman filter, the background-

error statistics in the EnKF are flow dependent, generating a model of background errors that

can vary significantly in time and space.

The EnKF is both an approximation to and an extention of the Kalman filter. Since covari-

ances are estimated from a finite sample, they may be worse than those predicted by the Kalman

filter. However, the Kalman filter itself makes the approximation that error covariances evolve

according to linear dynamics, whereas the EnKF makes no such assumption. Hence, if error dy-

namics are strongly nonlinear, the EnKF may produce a more accurate estimate relative to the

Kalman filter. However, to the extent that error dynamics are linear, as the ensemble size in-

creases, we would like the state and covariance estimate from the EnKF to converge to those

obtained from the extended Kalman filter.

The body of literature on ensemble-based data assimilation for atmospheric and oceano-

graphic applications has blossomed in recent years (e.g., Evensen 1994, Evensen and van Leeuwen

1996, Burgers et al. 1998, Houtekamer and Mitchell 1998, 1999, 2001, van Leeuwen 1999, Ler-

musiaux and Robinson 1999, Anderson and Anderson 1999, Hamill and Snyder 2000, 2002,

Keppenne 2000, Mitchell and Houtekamer 2000, Heemink et al. 2001, Hamill et al. 2001, 2003,

Anderson 2001, Pham 2001, Whitaker and Hamill 2002, Reichle et al. 2002, Tippett et al. 2002,

Mitchell et al. 2002, Hansen 2002, Keppenne and Rienecker 2002, Evensen 2003). These arti-

cles describe the EnKF as well as various proposed extensions or variants on its basic design.

Hopefully, this literature will be more readily accessible with an understanding of the basics pro-
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vided here. We will not review nor compare here the variants to the EnKF that have been pro-

posed in the literature. However, Tippett et al. (2002) provide such a comparison of the update

step in various ensemble-based algorithms.

a. Update equations

We first demonstrate how an ensemble of background forecasts are updated in the EnKF

and how they will have the correct asymptotic properties as ensemble size increases.

For notational simplicity, in this section we will drop the t time subscript used in previous

sections; it is assumed unless noted otherwise that we are interested in the analysis at time t.

We start off by assuming that we have an ensemble of forecasts that randomly sample the model

background errors. Let’s denote this ensemble as Xb, defined by

Xb = (xb
1; : : : ; x

b
m); (21)

where the subscript now denotes the ensemble member. Xb is thus a matrix whose columns are

comprised of ensemble member’s state vectors. We define the ensemble mean xb as

xb =
1
m

mX
i=1

xb
i : (22)

The perturbation from the mean for the ith member is x0bi = xb
i � xb. Let’s define X0b as a matrix

formed from an ensemble of perturbations:

X0b = (x0b1 ; : : : ; x
0b
m): (23)

Let P̂b represent an estimate of Pb from a finite ensemble:

P̂b =
1

m� 1
X0bX0b

T
: (24)

Also, letM denote the full, nonlinear forecast model operator that integrates the model state

from time t to t + 1.

Our goal is to construct a data assimilation system such that if the ensemble size is infinite

and if the dynamics are linear, i.e., ifM(xa
1) � M(xa) = M(xa

1 � xa), where M = @M
@x

is the
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Jacobian ofM, we will converge to the extended Kalman filter solution. To wit, the core idea of

the the EnKF is to run an ensemble of parallel data assimilation cycles, i = 1; : : : ;m, with each

member updated to a somewhat different realization of the observations, as illustrated in Fig. 2:

xa
i = xb

i + K̂(yi �Hxb
i ): (25)

Here, K̂ = P̂bHT(HP̂bHT + R)�1. H is the observation operator, which is permitted here to be a

nonlinear operator. For future reference, as with the extended Kalman filter, let’s define H as the

Jacobian of H: H = @H
@x

. In (25), the yi = y + y0i are “perturbed observations,” defined such that

y0i � N (0;R), and we ensure that

1
m

mX
i=1

y0i = 0:

The m sets of perturbed observations are thus created to update the m different background fields.

For a complex numerical weather prediction model with a high-dimensional state vector,

explicitly forming P̂b as in (24) would be computationally prohibitive; for example, in a model

with 106 degrees of freedom, storing and readily accessing the 1012 elements of P̂b is not possi-

ble. However, in the EnKF, K̂ can be formed without ever explicitly computing the full P̂b. In-

stead, the components of P̂bHT and HP̂bHT of K̂ are computed separately. Define

Hxb =
1
m

nX
i=1

Hxb
i ;

which represents the mean of the estimate of the observation interpolated from the background

forecasts. Then

P̂bHT =
1

m� 1

mX
i=1

�
xb

i � xb
��
Hxb

i �Hxb
�T
; (26)

and

HP̂bHT =
1

m� 1

mX
i=1

�
Hxb

i �Hxb
��
Hxb

i �Hxb
�T
: (27)

If departures from nonlinearity are again small, then Hxb
i �Hxb ' H(xb

i � xb). In this case,

P̂bHT '
1

m� 1

mX
i=1

�
xb

i � xb
��

xb
i � xb

�T
HT = P̂bHT; (28)
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and

HP̂bHT '
1

m� 1

mX
i=1

H
�
xb

i � xb
��

xb
i � xb

�T
HT = HP̂bHT: (29)

Hence, K̂ ! K of the extended Kalman filter when P̂b ! Pb, which occurs as m ! 1. Note

that essentially what we are doing in (26) and (27) is using the ensemble to make a square-root

representation of the background-error covariance. This trait will be shared among ensemble fil-

ters; see Tippett et al. (2002) for more discussion of this.

Why run a set of parallel data assimilation cycles, assimilating perturbed observations? We

now would like to show that in the limit of infinite ensemble size, we end up with the same up-

date equations in the EnKF that would be produced by the extended Kalman filter. Again, we

assume that departures from nonlinearity in the observation operator are relatively small so that

Hxb ' Hxb. The EnKF’s update for the ensemble mean state is thus

xa =
1
m

mX
i=1

xa
i

=
1
m

 
mX
i=1

xb
i + K̂(

mX
i=1

yi �
mX
i=1

Hxb
i

!

= xb + K̂(y�Hxb)

' xb + K̂(y�Hxb):

(30)

Thus, (30) is equivalent to the extended Kalman filter update equation (19) as m ! 1, assum-

ing H is approximately linear.

The equation to show the asymptotic equivalence of the analysis-error covariances is much

more tedious to derive. Interested readers can see the full derivation in Appendix 2. For here,

we are content to note that again, as m ! 1, P̂a = 1
m�1

D
X0aX0aT

E
! Pa = (I � KH)Pb as was

defined for the extended Kalman filter. As shown in Appendix 2, the covariance estimates from

the extended and ensemble Kalman filters are equivalent only if the observations are perturbed.

Ideally, we would hope to produce a quality ensemble of analyses even when m is small;

the more members, the larger the computational cost of the EnKF. To the extent that the error

covariances can be approximated reasonably by a small sample m << n, the EnKF will have a

large computational advantage over the extended Kalman filter.
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b. Error covariance propagation and model-error parameterization

We have not discussed yet how to evolve the analysis-error covariances forward to produce

an estimate of background-error covariances for the next assimilation time. In the discrete and

extended Kalman filters, analysis-error covariances were propagated using the linear tangent and

adjoint of the forecast model (eq. 15), and a covariance Q was added to account for the uncer-

tainty due to model error. In the ensemble Kalman filter, we’d like to take advantage of the po-

tential increase in accuracy that may result from estimating covariances from an ensemble prop-

agated with the fully nonlinear forecast model. If forecast-error dynamics are in fact quite non-

linear and saturate quickly, then the assumption of linearity in the discrete and extended Kalman

filters was inappropriate, and some accuracy may be gained relative to the Kalman filters by esti-

mating covariances from a sample of fully nonlinear model forecasts.

As we will see, we cannot just estimate background-error covariances at the next assimi-

lation cycle by conducting an ensemble of forecasts forward from the current cycle’s analyses.

To understand why, let’s return to (16). Because of model deficiencies, even if the true state of

the atmosphere is perfectly known, the resulting forecast will be imperfect: x(t+1) = Mx(t) + �,

where here we denote the time index in parentheses. Let’s first assume that our forecast model is

unbiased
D
�
E

= 0, again with model-error covariance
D
��T

E
= Q. In practice, the assumption of

no bias is probably not justified, and if the bias can be determined, the forecasts ought to be cor-

rected (Dee and Todling 2000). In any case, we propagate an analysis state estimate forward and

examine the error covariance at the next assimilation time. Assume again that forecast error and

model error are uncorrelated
D�
M(xa

(t)) �M(x(t))
�
�T
E

= 0, and assume linearity of the error

growthM(xa
(t)) �M(x(t)) ' M

�
xa

(t) � x(t)

�
. Then the true background-error covariance at the

next assimilation time is

D
(xb

(t+1) � x(t+1)) (xb
(t+1) � x(t+1))

T
E

=
D

(Mxa
(t) �Mx(t) � �) (Mxa

(t) �Mx(t) � �)T
E

'
D

M
�
xa

(t) � x(t)

��
xa

(t) � x(t)

�T
MT

E
+
D
��T

E
= MPa

(t)M
T + Q:

(31)
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Consider what happens when we estimate covariances directly from an ensemble of forecasts.

Say we propagate our ensemble of i = 1; : : : ;m analyses forward with the fully nonlinear fore-

cast model

xb
i(t+1) =M(xa

i(t)); (32)

Calculating the covariance, we getD
(xb

i(t+1) � xb
(t+1))(x

b
i(t+1) � xb

(t+1))
T
E

=
D�
M(xa

i(t))�M(xa
(t))
��
M(xa

i(t))�M(xa
(t))
�TE

'
D

M
�

xa
i(t) � xa

(t)

��
xa

i(t) � xa
(t)

�T
MT

E
'MP̂a

(t)M
T:

(33)

Comparing (31) and (33), we can see that an ensemble of analyses that are simply propagated

forward with the nonlinear forecast model will have too small an expected amount of spread,

missing the extra covariance Q. Let us define some hypothetical set of background forecasts at

time t+1 that do have the correct covariance, i.e., define xb
i(t+1) such that

D
(xb

i(t+1)�x
b
(t+1))(x

b
i(t+1)�

xb
(t+1))

T
E

= MP̂a
(t)M

T + Q. Assuming model error is locally low-dimensional, such an ensemble

is possible if we add noise to our existing ensemble:

xb
i(t+1) = xb

i(t+1) + �i; (34)

where
D
�i�

T
i

E
= Q and

D
�i

E
= 0.

Several methods have been considered for incorporating noise into the ensemble of fore-

casts so that they account for model error. First, one could actually make the forecast model

stochastic, adding terms to the prognostic equations to represent interactions with unresolved

scales and/or parameterized effects; in essence,M is changed so that the ensemble of forecasts

integrates random noise in addition to the determininstic forecast dynamics. Over an assimila-

tion cycle, this additional variance added to the ensemble as a result of integrating noise should

be designed to increase the covariance by the missing Q. Another possibility is that one may

choose to run a forecast model without integrating noise but to add noise to each member at

the data assimilation time so as to increase the ensemble variance appropriate to the missing Q.

Third, it may be possible to use a multi-model ensemble to estimate covariances.
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Little work has yet been done on the first of these three approaches. Buizza et al. (1999)

demonstrated a simple technique for integrating noise to account for deterministic sub-gridscale

parameterizations. Under their methodology, the parameterized terms in the prognostic equa-

tions were multiplied by a random number. The method was quite heuristic but appears to have

increased the spread in the ensemble forecasts somewhat and increased their skill (whether the

increased spread adequately represented Q is still an open question). Penland (2002) outlines

a more general approach for integrating system noise in numerical models. To date, however, a

comprehensive noise integration scheme has not yet been demonstrated in an operational weather

prediction model. Still, this is a promising avenue for more research: the problem of deficient

spread in ensemble forecasts will of course affect longer-range forecasts as well as shorter ones

between data assimilation cycles. If the methodology can be designed for data assimilation pur-

poses, it could be used to ameliorate the missing variance/ covariances due to model error in

subsequent ensemble forecasts as well.

The second general approach is to augment the ensemble-estimated model of covariances at

the data assimilation time with noise representing the missing model error covariances. Mitchell

and Houtekamer (2000) describe such an approach. Following a methodology outlined in Dee

(1995), innovation statistics y � Hxb from the data assimilation are used to estimate parameters

of a simple isotropic model of the system noise covariances Q. Random vectors that are con-

sistent with the system noise covariance are added to each ensemble member, producing an en-

semble with a larger spread. An advantage of this is that the innovation statistics can be used to

adaptively tune parameter values. For instance, if the covariance model estimated from the en-

semble provides a relatively good estimate of forecast-error covariances in one instance and a

bad estimate in another, the innovation statistics will detect this, and Q will be estimated to be

small for the former case and larger for the latter. A disadvantage of this approach is that it is

tailored specifically to make ensemble forecasts for data assimilation purposes, not for treating

model error in ensemble forecasts in general. If one desires after the data assimilation to gener-
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ate a subsequent ensemble of forecasts with a lead time of days or weeks, this approach will not

be helpful in ameliorating those spread deficiencies.

A third approach, use of multiple forecast models for generating the ensemble of background

forecasts (e.g., Houtekamer et al. 1996b, Harrison et al. 1999, Evans et al. 2000, Ziehmann

2000, Richardson 2000, Hou et al. 2001), is appealing for its simplicity. A wider range of fore-

casts is typically generated when different weather forecast models are used to forecast the evo-

lution of different ensemble members. Unfortunately, it is not clear whether or not the differ-

ences between members are actually representative of model errors; initial experimentation has

shown that the multi-model ensembles tend to produce unrealistic estimates of error covariances.

Forecast errors ought to be mostly balanced, but when estimated from multi-model ensembles,

preliminary results suggest that the errors are excessively out of balance, with detrimental effects

on the subsequent assimilation (personal communication, M. Buehner). See also Hansen (2002)

for a discussion of discussion of the use of multi-model ensembles in data assimilation in a sim-

ple model.

5. A SIMPLE DEMONSTRATION OF THE UPDATE STEP IN THE ENSEMBLE

KALMAN FILTER

Let us return to the data assimilation problem illustrated back in Fig. 1, when we were dis-

cussing Bayesian data assimilation. There, we were seeking to update a 2-D probability distribu-

tion given an observation in one dimension. Let’s explore the characteristics of the EnKF update

applied to this problem.

We sidestep the issue of system noise and model error discussed in the previous section.

We simply assume that we can generate a realistic random sample from the prior distribution for

purposes of demonstrating the data assimilation methodology. Accordingly, we start by generat-

ing an m = 50-member random sample from the distribution in Fig. 1(a). These are denoted by

the black dots in Fig. 5(a). We’ll keep special track of the assimilation for one particular mem-

ber, denoted by the larger black dot.
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The EnKF assumes that the background-error probability distribution is normally distributed.

Estimated from this random sample,

P̂b =

 
�2(xb

(1)) Cov(xb
(1); x

b
(2))

Cov(xb
(1); x

b
(2)) �2(xb

(2))

!
=
�

121:03 115:47
115:47 232:72

�
:

Here, since our observation measures the same aspect as the first component of our state vari-

able, H = [1; 0]. We assume R = 100, so HP̂bHT + R = 121:03 + 100 = 221:03. P̂bHT =

[121:03; 115:47]T, and hence K̂ = PbHT(HPbHT + R)�1 ' [:547; :512]T. We then apply

(25), updating background samples to their associated perturbed observations, generating analy-

sis samples. For example, the heavy black dot in Fig. 3(a) denotes one such background sample.

This particular background is updated to the perturbed observation marked with the “*”. The re-

sulting analysis sample is the large black dot in Fig. 3(b). The analysis has been adjusted from

the background in both directions, consistent with the error statistics built into K̂. Here, the first

component of the background state was much less than the mean, and the perturbed observation

was greater than the mean background state. The resulting analysis nudged the posterior state

toward the mean in both components.

Compare the EnKF random samples of the posterior from Fig. 3(b) with the Bayesian pos-

terior in Fig. 1(b). The EnKF assumed from the start that the prior distribution was normally

distributed, when in fact it was bimodal. Consequently, the samples from Fig. 3(b) do not ap-

pear to randomly sample the posterior from Fig. 1(b), which can be seen by comparing the fit-

ted normal distribution for the EnKF posterior to the Bayesian posterior. The EnKF posterior is

shifted slightly toward lower values in both components. The underlying problems are both the

assumption of normality and the limited ensemble size. Hopefully, scenarios with non-normal

distributions such as in Fig. 1(a) are relatively rare, as more involved techniques may then be

required (e.g., Gordon et al. 1993).

6. EXTENSIONS TO DEAL WITH FILTER DIVERGENCE

In the EnKF, algorithmic modifications are necessary to ensure that background-error statis-

tics estimated from ensembles do not systematically underestimate variance or overestimate co-
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variances. These problems can result in an underweighting of new observations.This process can

feed back on itself, the ensemble progressively ignoring observational data more and more in

successive cycles, leading eventually to a useless ensemble. This detrimental process is known

as “filter divergence” (e.g., Houtekamer and Mitchell 1998, van Leeuwen 1999, Hamill et al.

2001). For the EnKF, filter divergence may be caused in part by inappropriately treating model

error, as discussed in the previous section. It can also be caused by directly using a finite ensem-

ble to represent background error statistics. Hence, filter divergence can occur even if the fore-

cast model is perfect.

Two potential sources of filter divergence are illustrated in Fig. 4. The first is an underesti-

mate of background-error covariances. Fig. 4(a) illustrates a hypothetical posterior probability

distribution when background-error covariances are estimated correctly (in this example, the co-

variance between the two state components is zero). If background errors are underestimated,

the observation is comparatively underweighted (Fig. 4(b)) and the posterior distribution unduly

resembles the prior. Similarly, if there are directions in phase space where the ensemble under-

estimates the true background covariances because of sampling errors, or at its worst assumes

no variance at all because of the limited span of a finite number of ensemble members, then the

background is not sufficiently corrected back toward the observation in these directions.

Another problem may be that the magnitude of background-error covariances between an

observation location and a secondary, far-removed grid point are over-estimated due to sampling

errors. If so, the posterior probability distribution at this secondary grid point will be adjusted

too much (Fig. 4(c)). This can generate a posterior probability distribution that is biased and/or

has too little variance. In probabilistic terms, the posterior distribution has insufficient probabil-

ity in the region in phase space near to the true state.

The problems illustrated in Figs. 4 (b)-(c) can be expected to show up when applied to more

complex models, too. Following Houtekamer and Mitchell (1998), Figures 5 (a)-(b) illustrate

maps of covariances of 300 hPa temperature estimated from background ensembles of various

sizes. Here, a dry, low-resolution general circulation model and an ensemble assimilation scheme
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(Whitaker and Hamill 2002) were used; these will be described in more depth in Section 8. Each

map represents the spatial pattern of covariances of the ensemble background forecasts at each

location with a location over Europe, marked by a dot. Note two general characteristics: first,

for the 25-member ensemble in Fig. 5(a), there are many locations worldwide that appear to co-

vary with the ensemble at the observation location. Note especially the large covariances in the

Southern Hemisphere oceans, where there are few observations and background-error variances

are large (see Section 8). Second, note that the extent of the undesirably noisy covariances is

diminished somewhat when the ensemble size is increased (Fig. 5(b)). If the Kalman gain cal-

culation uses background-error covariances that are directly estimated from the ensemble, at

grid points where there are larger covariances, the EnKF will adjust the analysis proportionately.

These unwanted corrections can bias the resulting mean analysis and result in too little variance

in the analysis, contributing to filter divergence.

There are several possible measures that can be taken to prevent filter divergence. First,

some adequate treatment of model error is necessary, perhaps along the lines of algorithms sug-

gested in section 4b. By treating model error, the spread in the ensemble will be larger, result-

ing in a Kalman gain that draws the analysis away from the background forecasts and closer to

the observations. By (11) and (12), increasing the background-error covariances also preserves

more variance in the subsequent analysis. Another possible set of remedies are made possible by

modifying the model of background-error covariances estimated from the ensemble. We discuss

two potential remedies, “covariance localization” and “covariance inflation.”

a. Covariance localization

Consider the problem of updating the ensemble to a scalar observation. Typically, the noise

in covariance estimates is relatively independent of the distance between the observation and the

grid point, while the signal in the estimate is larger when the grid point is near the observation

(Houtekamer and Mitchell 2001, Hamill et al. 2001). Consequently, the covariance estimate

from the ensemble could be used more the near the observation location and damped to zero or a

small value away from it. This is the essence of one technique to ameliorate filter divergence, a
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technique called “covariance localization.” Under this, the covariance estimate from the ensem-

ble is multiplied point by point with a correlation function that is 1.0 at the observation location

and decreases monotonically with increasing distance. Mathematically, the Kalman gain equa-

tion K̂ = P̂bHT(HP̂bHT + R)�1 is replaced by a modified gain

K̂ =
�
�S Æ P̂bHT

��
H(�S Æ P̂b)HT + R

��1
; (35)

where the operation �S Æ in (35) denotes a Schur product (an element-by-element multiplica-

tion) of a correlation matrix S with the covariance model generated by the ensemble. The Schur

product of matrices A and B is a matrix C of the same dimension, where Cij = AijBij . The

application of the Schur product to the covariance estimate from the 100-member ensemble is

shown in Fig. 5(c). Note the damping of covariances everywhere but in the region around the

observation. As discussed in Hamill et al. (2001), covariance localization has the effect of mak-

ing the background-error covariance matrix higher in rank. When directly estimated from an n-

member ensemble, the rank of P̂b is n � 1. With covariance localization, it can be much higher.

A broader localization function is typically acceptable for larger ensembles, that is, the covari-

ance structure of the ensemble can be trusted in a wider region around the observation. When

used covariance localization is used with smaller ensembles, it can actually result in more accu-

rate analyses than would be obtained from larger ensembles without localization (e.g., Houtekamer

and Mitchell 2001).

What underlies usefulness of covariance localization is that growing error structures on dif-

ferent parts of the globe often act nearly independently. Hence, growing structures are fewer in

number if one examines smaller sub-regions of the analysis domain. (Patil et al. 2001). Hence,

the number of locally growing directions may be able to be reasonably spanned with a limited-

size ensemble. Under these conditions, the data assimilation problem in different regions of the

globe can use covariance estimates from the same ensemble yet deal with them separately through

covariance localization or essentially similar techniques (e.g., Ott et al. 2003).
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See Hamill et al. (2001) for more details on implementation of covariance localization, and

see Mitchell and Houtekamer (2002) for a discussion of balance issues related to the length scale

of the covariance localization function.

b. Covariance inflation

Another problem, illustrated in Fig. 4(b), was the detrimental effect of underestimating the

variances. This underestimation can occur even in simulations where the ensemble is perfect,

caused by sampling error and the nonlinearity of the Kalman gain (Whitaker and Hamill 2002).

As a remedy, Anderson and Anderson (1999) suggested increasing background-error covariances

somewhat by inflating the deviation of background members with respect to their mean by a

small amount. Before the first observation is assimilated in a new cycle, background forecasts

deviation from the mean are inflated by an amount r, slightly greater than 1.0:

xb
i  r

�
xb

i � xb
�

+ xb: (36)

Here, the operation denotes a replacement of the previous value of xb
i . This technique is called

“covariance inflation.” Application of a moderate inflation factor has been found to improve the

accuracy of assimilations. Note that inflation effectively increases the spread of the ensemble,

but it does not change the subspace spanned by the ensemble. Hence, it is likely not an effective

remedy for model error, which presumably projects into a substantially different subspace.

Houtekamer and Mitchell (1998) have proposed the use of a “double” ensemble Kalman

filter that eliminates the necessity of using an inflation factor. The ensemble is split into two

separate sub-ensembles, where one ensemble is used to estimate error covariances for the other.

Systematic underestimation of covariances are much less likely to happen in the double EnKF,

though for the same accuracy of covariance estimates, twice as many ensemble members are

needed. See van Leeuwen (1999) and Houtekamer and Mitchell (1999) for a discussion.

7. MAKING THE ENSEMBLE KALMAN FILTER COMPUTATIONALLY

TRACTABLE
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Though the EnKF is computationally less expensive than the Kalman filter, it is still a much

more expensive calculation than 3D-Var and it is probably roughly the same order of magnitude

as 4D-Var. The computational expense of the EnKF will scale with the number of observations

times the number of ensemble members times the dimension of the state vector. Practically,

though, the relative expense may be more determined by factors such as the convergence rate

of 4D-Var, the extent of parallelization of ensemble approaches, and the complexity of the oper-

ator H. For example, with observations such as radiances, H may be computationally very ex-

pensive, while with observations like rawinsonde temperature data, simple interpolations to the

observation location may be all that is needed. Since H is calculated for each ensemble member,

if H is particularly expensive, this may dramatically increase the overall cost of the ensemble

filter.

How can we minimize the computational time of these ensemble filters? We have already

discussed one shortcut, avoiding the formulation of P̂b directly and calculating the gain com-

ponents directly from the ensemble. (eqs. 26 and 27). We now consider two other methods for

simplifying the calculations, serial (sequential) processing of observations and parallel-processing

methods.

a. Serial Processing of Observations

Gelb (1974) demonstrated in the Kalman filter that a batch of independent observations can

be assimilated either simultaneously or sequentially (serially). Starting with a background fore-

cast and background error-covariances, a single observation may be assimilated. The analysis

state and analysis-error covariance resulting from the assimilation of the first observation may be

used as the background and background-error covariance in the assimilation of the second ob-

servation. Regardless of whether the observation are assimilated simultaneously or serially, the

same expected analysis and analysis-error covariance will result. Consequentially, the order in

which observations are serially assimilated is unimportant.

Serial processing of observations may be desirable, as both the coding and the computations

are somewhat less demanding. Most of the ensemble-based algorithms described in the literature
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serially assimilate observations. When observations are assimilated serially, for each observation

that is assimilated, HP̂bHT and R become scalars. Thus, their inverse (HP̂bHT + R)�1 in the

gain matrix is trivial to compute. Also, the application of the covariance localization in (35) is

much more straightforward.

The validity of an equivalence between serial and simultaneous assimilation is often as-

sumed in the ensemble Kalman filter in instances where observation errors are independent. Prac-

tically, however, there are two problems. First, unlike the Kalman filter, somewhat different anal-

yses may result if observation 1 is processed before observation 2 instead of 2 before 1, so the

equivalence is not strictly correct, This non-equivalence is due to spurious observation-background

error covariances introduced by the perturbed observations and the nonlinearity of the Kalman

gain calculation. A more detailed explanation of these effects and a discussion of alternative al-

gorithms to the EnKF where observation order is irrelevant are discussed in Whitaker and Hamill

(2002). Regardless, for a reasonably large ensemble (50-100 members), order is nearly irrele-

vant in the EnKF, introducing errors that are much smaller than those caused by sampling errors

in the background-error covariance estimate.

The second problem is that the equivalence of serial and simultaneous processing is only

true if observations have independent errors (Kaminsky et al. 1971). Practically, however, many

observations may have vertically or horizontally correlated errors. Consider two alternatives

to deal with this. First, if the size of a batch of observations with correlated errors is relatively

small, these batches can be processed simultanteously without much more computational ex-

pense; the matrix inverse of (HP̂bHT + R)�1 should not be prohibitively expensive. Another

option is to transform the observations and the forward operator so that the observations are ef-

fectively independent. The method for doing this is derived in Appendix 3.

b. Parallel Processing

Many modern computers today are “massively parallel” computers consisting of individual

central processing units (CPUs) with their own memory. Such computers often have relatively

fast computational speed on each CPU, but the overall speed of a calculation can be slowed sig-
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nificantly when new data must be continually exchanged between CPUs. Hence, to speed up the

processing speed of the EnKF on such computers, the parallelization ought to be designed so a

minimum of data need be exchanged among the CPUs.

There are two general components to the EnKF; first, for an m-member EnKF, m parallel

data assimilation cycles will need to be computed, and second, from the m resulting analyses, m

forecasts forward to the next assimilation time. The forecast component is easily parallelizable.

Each member of the ensemble can be forecast in parallel on a separate CPU(s), since no infor-

mation need be swapped between CPUs during the forecast step. However, parallelizing the data

assimilation component is considerably more difficult. The update of each member background

forecast to the new observations requires information from all the other ensemble members in

formulating the gain matrix K̂. It would be highly inefficient to simply parallelize so that differ-

ent members were updated on different processors, since each processor would be duplicating

the same computationally expensive gain calculation. How, then, might we speed up the compu-

tation of parallel analyses?

One reasonably simple thing to do is to parallelize over widely separated observations or

batches of observations. Envision two observations on opposite sides of the world. With covari-

ance localization, each observation corrects the background at a mutually exclusive set of grid

points. In this case, regardless of whether the two observations are processed serially or simul-

taneously in parallel, the same analyses will result. This is one simple example of how the com-

putations in the EnKF may be parallelized. Houtekamer and Mitchell (2001) discuss the design

and testing of a parallel ensemble Kalman filter exploiting this algorithm. See also Keppenne

and Rienecker (2002).

How else might the work of the ensemble filter be split up among several CPUs? Typically,

one of the most computationally expensive steps during the EnKF is the calculation of the K̂,

and in particular, the computation of the term P̂bHT. If this could be parallelized, it could result

in dramatic cost savings. Following (26), when observations are processed serially, this term is

computed from a product of the n�m matrix of ensemble perturbations and the m-dimensional
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vector of observation operators applied to the ensemble perturbations. Consider, now, that the

n-dimensional state vector is split up over a number of processors. Perhaps the ensemble of

northern hemisphere grid points are processed on CPU 1, the southern hemisphere on CPU 2.

Say we are to process two observations serially, one just north of the equator and one south of

it. For the first observation, the ensemble of
�
Hxb

i �Hxb
�T

from (26) could be computed on

CPU 1 and then transferred to processor 2. CPU 1 would then calculate P̂bHT for the northern

hemisphere, CPU 2 for the southern hemisphere. Following that, the update (25) would simi-

larly be split amongst the two CPUs. When the second observation in the southern hemisphere

is ready to be processed, the ensemble of
�
Hxb

i �Hxb
�T

can be computed on CPU 2 and that

data shipped back to CPU 1. The computationally expensive part of the gain calculation (26)

and the update (25) are then again computed in parallel. This general method of parallelization

could be split up over any arbitrarily large number of CPUs. As long as the operator H is rela-

tively simple, then the step of computing the Hxb
i should proceed relatively quickly on one pro-

cessor (not leaving the other processors idle for long), and the amount of data shipped between

processors should be minimal.

8. DEMONSTRATION OF ENSEMBLE-BASED DATA ASSIMILATION

We now demonstrate an ensemble-based data assimilation methodology in a simplified gen-

eral circulation model. Specifically, we show how the model of background-error covariances

produced by the ensemble filter exhibits flow-dependent structures that are dramatically different

from the stationary, isotropic background-error covariance models commonly used in schemes

such as 3D-Var. We will not focus on comparisons against other assimilation schemes; for such

results, see, for example, Hamill and Snyder (2000), Anderson (2001), and Hamill and Snyder

(2002), and Whitaker and Hamill (2002).

The experiment is conducted under perfect-model assumptions; that is, the same forecast

model is used to generate both a synthetic true state and in the conduct of the ensemble fore-

casts. To generate a time series of the true state, we started with a random perturbation superim-
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posed upon a resting state. The model is then integrated for 280 days. The first 100 days were

discarded, and the remaining 180 days comprise the time series of the true state used in this ex-

periment. Hereafter, day 100 is considered the starting point, the day 0 for all further experi-

ments.

Errors will be measured in a total energy norm. We follow the definition of total energy

from Ehrendorfer and Errico (1995):

k � k =

r
1
2

R
D

R 1
0

h
u2 + v2 + cp

Tr

T 2 +RdTr
�
ps
pr

�2i
d� dDR

D

R 1
0 d� dD

(37)

where D indicates the horizontal domain, � is the vertical coordinate, Tr is a reference temper-

ature (here, 300 K), Rd is the gas constant for dry air (287 J K�1 kg�1), and cp is the specific

heat of dry air at constant pressure (1004 J K�1 kg�1), ps is the surface pressure, and pr is a

reference pressure (1000 hPa).

a. Forecast model

A T51 L15 dry, primitive equation spectral model is used for the following experiments.

There are no terrain nor surface variations. The model has 60,996 degrees of freedom. The prog-

nostic variables are vorticity, divergence, temperature, and surface pressure. Except for a minor

modification to the forcing, described in Hamill et al. (2003), the model is essentially equivalent

to the model of Held and Suarez (1994). The model has an error-doubling time of � 3.1 days.

A lower-resolution version of the model was previously described and used for data assimilation

experiments in Hamill et al. (2003).

b. Observations

Synthetic rawinsondes (raobs) were assimilated every 12 h. The observations consisted of a

surface pressure measurement and winds and temperatures at 7 of the sigma levels, located ap-

proximately at 900, 766, 633, 500, 366, 233, and 100 hPa. Observations had error characteris-

tics derived from Parrish and Derber (1992), and observation errors were assumed uncorrelated

in the vertical. Observation locations are shown in Fig. 6; they were chosen to provide a crude

analog to the operational raob network, with more observations over the land than the ocean.
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c. Initial conditions

The method of generating the initial ensemble is somewhat irrelevant, provided the spread

in the ensemble is large enough so that initial background-error variances are overestimated rather

than underestimated (the latter could cause immediate filter divergence). After a period of a

few days, the structure of the ensemble perturbations is determined primarily by forecast error

growth and error reduction from assimilating observations, not by the initial ensemble; that is,

two ensembles initialized in two very different manners will eventually generate very similar

background-error covariance models.

Given that we are conducting a perfect-model experiment here, the full time series of the

evolution of the true state is known. Hence, we chose here to initialize the ensemble as a linear

combination of the true state plus noise. Specifically, each initial ensemble member consisted of

80 % of the value of the true state at the initial time and 20% of the value of the true state at a

randomly selected time from the time series. In this experiment, a 100-member ensemble was

used.

d. Assimilation methodology

The ensemble-based data assimilation methodology used here is a variant of the ensem-

ble Kalman filter, a technique we have called the ensemble square-root filter, or “EnSRF.” It is

very similar to the EnKF, but the algorithm is designed in a manner where each of the parallel

data assimilation cycles assimilates the same unperturbed observations. We describe the scheme

briefly here; for more information, see Whitaker and Hamill (2002).

Like the EnKF, the EnSRF conducts a set of parallel data assimilation cycles. It is conve-

nient in the EnSRF to update the equations for the ensemble mean (denoted by an overbar) and

the deviation of the ith member from the mean separately:

xa = xb + K̂(y�Hxb); (38)

x0ai = (I� eKH)x0b
i
: (39)
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Here, K̂ is the traditional Kalman gain as in Eq. (25), and eK is the “reduced” gain used to up-

date deviations from the ensemble mean.

When sequentially processing independent observations, K̂, eK, HP̂b and P̂bHT are all n-

dimensional vectors, and HP̂bHT and R are scalars. Thus, as first noted by Potter (1964), when

observations are processed one at a time,

eK =

0@1 +

s
R

HP̂bHT + R

1A�1

K̂: (40)

The quantity multiplying K̂ in Eq. (40) is thus a scalar between 0 and 1. This means that, in

order to obtain the correct analysis-error covariance with unperturbed observations, one uses

a modified Kalman gain to update deviations from the ensemble mean that is reduced in mag-

nitude relative to the traditional Kalman gain. Consequently, deviations from the mean are re-

duced less in the analysis using eK than they would be using K̂. In the EnKF, the excess variance

reduction caused by using K̂ to update deviations from the mean is compensated for by the in-

troduction of noise to the observations. In the EnSRF, the mean and departures from the mean

are updated independently according to Eqs. (38) and (39). If observations are processed one at

a time, the EnSRF requires about the same computation as the traditional EnKF with perturbed

observations, but it produces analyses with significantly less error (Whitaker and Hamill 2002).

The general analysis methodology is thus as follows: generate a set of perturbed initial con-

ditions as previously discussed. Make m forecasts forward to the next data assimilation time.

Perform m + 1 parallel data assimilation cycles, updating the mean state using (38) and the m

perturbations using (39) and (40). Repeat the process. In each data assimilation cycle, observa-

tions are assimilated serially.

Our experiment was conducted over an 180-day period. In this implementation of the En-

SRF, covariances were localized using a Schur product of ensemble covariances with an � Gaussian-

shaped function with local support (Gaspari and Cohn 1999) reaching a zero value at 4000 km

distance from the observation. Before each data assimilation cycle, ensemble deviation from the

mean were inflated by 1.2 % following (36).
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e. Results

First, consider the time series of analysis errors in an energy norm (Fig. 7). This initial en-

semble was not very accurate, but the data assimilation quickly reduced the error in the analysis.

On average, the errors remained largest in the southern hemisphere, where there were few obser-

vations (Fig. 8).

As the ensemble cycled forward, the covariances began to reflect more and more the flow-

dependent error structures. Figure 9 provides an illustration of the background-error covariances

used in the assimilation around four selected hypothetical observation locations. Notice that the

covariances have very complicated structures. Consider the covariances around the grid point in

the eastern Pacific. Here, the observation was just north of the front, and the model of covari-

ances indicates that covariances were not largest at the observation location, but rather slightly

southeast of the observation, in the region of the front. Further, the covariances were elongated

along the isotherms rather than across it. When considering the assimilation of a single obser-

vation, the Kalman gain K̂ will be directly proportional to P̂bHT, that is, proportional to the co-

variance with the observation location. Hence, this indicates that a small observation increment

at this location in the Pacific made larger corrections to the background state in the region of the

nearby front than at the observation location itself. This was very different than the corrections

that 3D-Var would have made, which would have been largest at the observation and decreased

with increasing distance from the observation. The background-error covariance model from

the ensemble filter may make more synoptic sense; a small change in the position of the front

resulted in a large change of temperature there, but that change was smaller outside the frontal

zone (Fig. 10).

Notice also in Fig. 9 that the background-error covariances had much different structures

around each of the observation locations. For example, that the covariances around the obser-

vation in eastern Europe were much smaller in magnitude. Part of the reason covariances were

smaller was because this observation was in a more data-rich region, where background fore-
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casts had less spread. As a result of the smaller covariances, the analysis in this region was drawn

less to new observation than it was the observation in the eastern Pacific.

9. WHERE NEXT?

The field of ensemble-based atmospheric data assimilation is a very new one. To this date,

because of the computational expense and the need for a basic understanding of these approaches,

most of the experimentation with ensemble filters have been done in simple models, often using

assumptions that are unrealistic for practical numerical weather prediction (for example, the as-

sumption of a perfect model). The results with these simple experiments have been uniformly

impressive, indicating that testing in more realistic scenarios is warranted. That is the state of

the field in 2003. Several groups, most notably researchers with Environment Canada, are test-

ing the methodology with real observational data and comparing results against current opera-

tional methods.

We still have much to learn about ensemble-based data assimilation methodologies. We are

still just beginning to explore how to parameterize model error. The extent to which the under-

lying assumptions of these filters are met (such as Gaussianity) are not well known. Many prac-

tical problems such as ensuring balanced initial conditions may need to be addressed. Head-to-

head comparisons against 4D-Var in a scenario of identical computing resources have not yet

been performed, so the appeal is more theoretical than evidence-based. Despite the problems,

the potential upside of ensemble assimilation methodologies is huge. Since no tangent-linear or

adjoint models are needed, the code is relatively simple to develop. Unlike 4D-Var, linearity of

error growth is not assumed, and if model error can be parameterized effectively, its effect on the

data assimilation can be rationally incorporated.

Because of the potential benefits and the promise of improved objective analyses, expect a

burgeoning literature on ensemble-based data assimilation in the coming years.

10. APPENDIX 1: DERIVATION OF THE DISCRETE KALMAN FILTER UPDATE

EQUATIONS
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a. Discrete Kalman filter state update equation

Given the functional

J (xt) =
1
2

"
(xt � xb

t )T Pb
t
�1

(xt � xb
t ) + (Hxt � yt)

TR�1(Hxt � yt)

#
; (A1)

we seek to find the model state that minimizes this functional, providing the best fit between the

observations and background. Let’s call this model state “the analysis,” or xa
t . Differentiating

the functional with respect to xt and setting the result equal to zero to find the expected mini-

mum, we get

Pb
t
�1

(xa
t � xb

t ) + HTR�1(Hxa
t � yt) = 0; (A2)

Rearranging terms, we get

xa
t =

�
Pb

t
�1

+ HTR�1H
��1h

Pb
t
�1

xb
t + HTR�1yt

i
: (A3)

We now put to use the Sherman-Morrison-Woodbury formula (Golub and van Loan 1989). For

matrices A, U, and V,

(A + UVT)�1 = A�1 � A�1U(I + VTA�1U)�1VTA�1: (A4)

Using this, where A = Pb
t
�1

, U = HTR�1, and VT = H, we get

xa
t =

�
Pb

t � Pb
t HTR�1(I + HPb

t HTR�1)�1HPb
t

�h
Pb

t
�1

xb
t + HTR�1yt

i
: (A5)

Next, using the identity A�1B�1 = (BA)�1 for two invertible matrices A and B, where A = R

and B = I + HPb
t HTR�1 (A5) becomes

xa
t =

�
Pb

t � Pb
t HT(HPb

t HT + R)�1HPb
t

�h
Pb

t
�1

xb
t + HTR�1yt

i
: (A6)

Expanding (A6), we get

xa
t = xb

t � Pb
t HT(HPb

t HT + R)�1Hxb
t + Pb

t HTR�1yt � Pb
t HT(HPb

t HT + R)�1HPb
t HTR�1yt

= xb
t � Pb

t HT(HPb
t HT + R)�1Hxb

t + Pb
t HT(R�1 � (HPb

t HT + R)�1HPb
t HTR�1)yt

= xb
t � Pb

t HT(HPb
t HT + R)�1Hxb

t + Pb
t HT(R�1 � (HPb

t HT + R)�1(HPb
t HT + R� R)R�1)yt:

(A7)
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Using the vector identity B�1 = A�1 � B�1(B � A)A�1, (Golub and Van Loan 1989) to R�1 �

(HPb
t HT + R)�1(HPb

t HT + R� R)R�1, where A = R�1 and B = HPb
t HT + R, (A7) simplifies to

xa
t = xb

t +
h
Pb

t HT(HPb
t HT + R)�1

i
(yt �Hxb

t ): (A8)

This is update equation for the model state in the Kalman filter. Commonly we define a matrix

K, the Kalman gain matrix, as

K = Pb
t HT(HPb

t HT + R)�1; (A9)

so (A8) is expressed more compactly as

xa
t = xb

t + K(yt �Hxb
t ): (A10)

Interpretation of this equation is described in the main text.

b. Discrete Kalman filter covariance update equation

The crucial difference between the Kalman filter compared with 3D-Var or other analysis

schemes is that the error covariances are explicitly evolved in time through the data assimilation

and through the subsequent forecast. Assume that we know the background-error covariance Pb
t

and seek to know the resulting analysis-error covariance Pa
t that results from the assimilation of

observations. We start with the definition of Pa
t :’

Pa
t =

D
(xt � xa

t )(xt � xa
t )T
E
: (A11)

Subtracting both sides of (A10) from xt gives

xt � xa
t = xt � xb

t �K(yt �Hxt): (A12)

As previously, we assume yt = Hxt + �, where � � N (0;R). In this case, we can write (A12) as

xt � xa
t = xt � xb

t �K(� + Hxt �Hxb
t )

= (I�KH)(xt � xb
t )�K�:

(A13)

38



Now, let us form the covariance matrix (A11). Assuming that observation and background errors

are uncorrelated, i.e.,
D

(xt � xb
t ) �T

E
= 0, and noting that Pb

t = Pb
t

T
and using the matrix identity

ATBT = (AB)T, we get

Pa
t =

D
(xt � xa

t )(xt � xa
t )T
E

=
D

(I�KH)(xt � xb
t )(xt � xb

t )T(I�KH)T + K��TKT
E

=
�

I�KH
�
Pb

t

�
I�KH

�T
+ KRKT

= Pb
t �KHPb

t �
�
KHPb

t

�T
+ K

�
HPb

t HT + R
�

KT

:

(A14)

Inserting the definition of K from (A9) and expanding, (A14) simplifies to

Pa
t = Pb

t � Pb
t HT

�
HPb

t HT + R
��1

HPb
t

=
�
I�KH

�
Pb

t

:

(A15)

This is the update equation for the covariances. We note in passing that the assumption that ob-

servation and background errors are uncorrelated is not always realistic. The observation-error

covariance R is commonly thought of as representing both random errors from the instrument

as well as “representativeness” errors, denoting the fact that an observation typically measures

a point value not a grid volume; hence the point value may not be representative of the average

value for that grid volume. One may imagine that representativeness errors may be larger in sit-

uations where there is a strong gradient in the background, such as near a front. In this manner,

representativeness errors may in fact have some correlation with the background errors, one be-

ing larger when the other is. For simplicity, we will neglect this source of error, but it may be

helpful to keep in mind where such simplifying assumptions have been made.

11. APPENDIX 2: DERIVATION OF THE ENSEMBLE KALMAN FILTER

COVARIANCE UPDATE

Following Burgers et al. (1998), here we show that the analysis error covariance estimated

from the ensemble converges to that which would be obtained from the Kalman filter as ensem-
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ble size increases. That is, for an m-member ensemble, if X0a is defined as X0a = [xa
1�xa; : : : ; xa

m�

xa], then P̂a = 1
m�1X0aX0aT, and

D
P̂a
E
! Pa as m!1, where Pa = Pa

t in (11).

From (25) it is apparent that the EnKF requires the up-front computation of a set of per-

turbed observations, one set associated with each member forecast. The perturbed observations

are generated by adding random noise � N (0;R) to the control observations. Let’s make a ma-

trix of column vectors of the noise terms from the perturbed observations:

Y0 = (y01 � y; : : : ; y0m � y): (A16)

With some simple algebra, one can show that

P̂a =
1

m� 1

h
X0b + K̂Y0 � K̂HX0b

ih
X0b + K̂Y0 � K̂HX0b

iT
: (A17)

X0b was defined in (23) of section 4, and K̂ = P̂bHT(HP̂bHT + R)�1. Let’s assume that the

observations and the background are uncorrelated, i.e.,
D

X0bY0T
E

= 0 and
D
HX0bY0T

E
= 0.

Using the definition of P̂b from (24), one can then show that (A17) can be expressed as

D
P̂a
E

=
D 1
m� 1

�
X0bX0b

T
� X0b(K̂HX0b)T + K̂Y0Y0TK̂T � K̂HX0bX0b

T
+ (K̂HX0b)(K̂HX0b)

T�E
=
D

P̂b � P̂bHTK̂T + K̂RK̂T � K̂HP̂b + K̂HP̂bHTK̂T
E

=
D

P̂b � P̂bHTK̂T � K̂HP̂b + K̂(HP̂bHT + R)K̂T
E

:
(A18)

By inserting the definition of K̂, then K̂(HP̂bHT + R)K̂T = P̂bHTKT, so

D
P̂a
E

=
D

P̂b � K̂HP̂b
E
: (A19)

If
D

P̂b
E

= Pb as it should be as m ! 1, and if P̂bHT = P̂bHT and HP̂bHT = HP̂bHT as in (28)

and (29), then
D

K̂
E

= K, where K is the Kalman gain of the extended Kalman filter, and (A19)

is equivalent to (11).

12. APPENDIX 3: SERIAL PROCESSING OF NON-INDEPENDENT OBSERVATIONS

IN THE ENSEMBLE KALMAN FILTER
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As previously outlined, if observations have independent errors, then they can be processed

serially, which may be of computational advantage. If the observations are not independent, the

EnKF update equation (19) can be transformed so that serial processing of observations can oc-

cur.

Recall that we assume yt = Hxt + �, where � � N (0;R). Presumably R is not diagonal

here, so observations are not independent. However, R is symmetric and positive definite, so it

has a decomposition of the form R = QRΛRQT
R, where QR is a unitary matrix with properties

that QRQT
R = I and QT

R = Q�1
R (here QR does not denote model error). ΛR is a diagonal matrix

of associated eigenvalues.

Let’s denote a pseudo-observation ỹ = QT
Ry, or alternately, y = QRỹ. Then ỹ = QT

RHxt+QT
R�.

Hence D
QT

R� (QT
R�)

T
E

= QT
R

D
��T
E

QR = ΛR: (A20)

Define fH = QT
RH, or equivalently H = QR

fH. Substituting this definition of H and y into the

EnKF update equation (25), we get

xa
i = xb

i + P̂bHT(HP̂bHT + R)�1(yi �Hxb
i )

= xb
i + P̂b(QR

fH)
T

(QR
fHPbfHTQT

R + QRΛRQT
R)�1(QRỹi �QR

fHxb
i )

= xb
i + P̂bfHTQT

RQR(fHP̂bfHT + ΛR)�1QT
RQR(ỹi �fHxb

i )

= xb
i + P̂bfHT(fHP̂bfHT + ΛR)�1(ỹ �fHxb

i )

:

(A21)

Thus, given a batch of observations with correlated errors and known observation-error covari-

ance matrix R for these observations, one determines the eigenvectors QR and eigenvalues ΛR of

R, forms the transformed perturbed observations ỹ and operator fH and then solves the last line

of (A21) can be used to serially process observations. See Kaminsky et al. (1971) for an essen-

tially equivalent algorithm using a Cholesky decomposition.

13. ACKNOWLEDGMENTS

41



Deszo Devenyi (NOAA/FSL), Chris Snyder (NCAR/MMM), Jeff Whitaker (NOAA/CDC),

and Jim Hansen (MIT) are thanked for their informal reviews of this manuscript. Three anony-

mous reviewers provided useful feedback that substantially improved the quality of this manuscript.

This paper was originally prepared for ECMWF’s 2002 Predictability Workshop. The many

participants who offered interesting questions and constructive criticism at this workshop are

thanked as well.

42



REFERENCES

Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear

filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127,

2741-2758.

Anderson, J. L., 2001: An ensemble adjustment filter for data assimilation. Mon. Wea. Rev.,

129, 2884-2903.

Bellman, R. E., 1961: Adaptive Control Processes. Princeton University Press.

Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996: Generalized inversion of a global numerical

weather prediction model. Met. Atmos. Phys., 60, 165-178.

Blanchet, I., C. Frankignoul, and M. A. Cane, 1997: A comparison of adaptive Kalman filters

for a tropical ocean model. Mon. Wea. Rev., 125, 40-58.

Bouttier, F., 1994: A dynamical estimation of forecast error covariances in an assimilation sys-

tem. Mon. Wea. Rev., 122, 2376-2390.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties

in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887-2908.

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman

filter. Mon. Wea. Rev., 126, 1719-1724.

Cohn, S. E., and D. F. Parrish, 1991: The behavior of forecast error covariances for a Kalman

filter in two dimensions. Mon. Wea. Rev., 119, 1757-1785.

, 1997: An introduction to estimation theory. J. Meteor. Soc. Jap., 75(1B), 257-288.

Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implemen-

tation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367-

1387.

Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press. 457 pp.

, 1992: Estimating model-error covariances for applications to atmospheric data assimi-

lation. Mon. Wea. Rev., 1‘20, 1735-1746.

43



Dee, D. P., 1995: On-line estimation of error covariance parameters for atmospheric data assimi-

lation. Mon. Wea. Rev., 123, 1128-1145.

Dee, D. P., and R. Todling, 2000: Data assimilation in the presence of forecast bias: the GEOS

moisture analysis. Mon. Wea. Rev., 128, 3268-3282.

Ehrendorfer, M., and R. M. Errico, 1995: Mesoscale predictability and the spectrum of optimal

perturbations. J. Atmos. Sci., 52, 3475-3500.

Evans, R. E., M. S. J. Harrison, and R. J. Graham, 2000: Joint medium-range ensembles from

the Met. Office and ECMWF systems. Mon. Wea. Rev., 128, 3104-3127.

Evensen, G., 1992: Using the extended Kalman filter with a multilayer quasi-geostrophic ocean

model. J. Geophys. Res., 97, 17905-17924.

, 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte

Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10143-10162.

, and P. J. van Leeuwen, 1996: Assimilation of Geosat altimeter data for the Agulhas

current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev.,

124, 85-96.

, 2003: The ensemble Kalman filter: theoretical formulation and practical implementa-

tion. Ocean Dynamics, submitted.

Farrell, B. F., and P. J. Ioannou, 2001: State estimation using a reduced- order Kalman filter. J.

Atmos. Sci., 58, 3666-3680.

Fisher, M., 1998: Development of a simplified Kalman filter ECMWF Research Department

Techical Memorandum 260. European Centre for Medium-Range Weather Forecasts. 16 pp.

Available from Library, ECMWF, Shinfield Park, Reading, Berkshire, RG2 9AX, England.

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three dimen-

sions. Quart. J. Roy. Meteor. Soc., 125, 723-757.

Gauthier, P., P. Courtier, and P. Moll, 1993: Assimilation of simulated lidar data with a Kalman

filter. Mon. Wea. Rev., 121, 1803-1820.

Gelb, A. (ed.), 1974: Applied optimal estimation. MIT Press, 374 pp.

44



Ghil, M., 1989: Meteorological data assimilation for oceanography. Part 1: description and the-

oretical framework. Dyn. Atmos. Oceans, 13, 171-218.

Golub, G. H., and C. F. Van Loan, 1989: Matrix Computations (second edition). Johns Hopkins

University Press, 642 pp.

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian

Bayesian state estimation. IEEE Proceedings - F, 140, 107-113.

Hamill, T. M., and C. Snyder, 2000. A hybrid ensemble Kalman filter / 3d-variational analysis

scheme. Mon. Wea. Rev., 128, 2905-2919.

, J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background-error

covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.

, and , 2002: Using improved background-error covariances from an ensemble

Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 1552-1572.

, C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-

dependent analysis-error covariance singular vectors. Mon. Wea. Rev., in press.

Hansen, J. A., 2002: Accounting for model error in ensemble-based state estimation and fore-

casting. Mon. Wea. Rev., 130, 2373-2391.

Harrison, M. S. J., T. N. Palmer, D. S. Richardson, and R. Buizza, 1999: Analysis and model

dependencies in medium-range ensembles: two transplant case studies. Quart. J. Roy. Me-

teor. Soc., 125, 2487-2515.

Hastie, T., R. Tibshirani, and J. Friedman, 2001: The Elements of Statistical Learning. Springer,

533 pp.

Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores

of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825-1830.

Heemink, A. W., M. Verlaan, and A. J. Segers, 2001: Variance-reduced ensemble Kalman filter-

ing. Mon. Wea. Rev., 129, 1718-1728.

Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX-98 en-

semble forecasts. Mon. Wea. Rev., 129, 73-91.

45



Houtekamer, P. L., L. Lefaivre, and J. Derome, 1996a: The RPN ensemble prediction system.

Proc. ECMWF Seminar on Predictability, Vol II, Reading, United Kingdom, 121-146. [Avail-

able from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom].

, J. Derome, H. Ritchie, and H. L. Mitchell, 1996b: A system simulation approach to

ensemble prediction. Mon. Wea. Rev., 124, 1225-1242.

, and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter tech-

nique. Mon. Wea. Rev., 126, 796-811.

, and H. L. Mitchell, 1999: Reply to comment on “Data assimilation using an ensemble

Kalman filter technique.” Mon. Wea. Rev., 127, 1378-1379.

, and , 2001: A sequential ensemble Kalman filter for atmospheric data assimi-

lation. Mon. Wea. Rev., 129, 123-137.

Jazwinski, A. H., 1970: Stochastic processes and filtering theory. Academic Press, 376 pp.

Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Transactions

of the AMSE- Journal of Basic Engineering. 82D, 35-45.

, and R. S. Bucy, 1961: New results in linear filtering and prediction theory. Transac-

tions of the AMSE-Journal of Basic Engineering. 83D, 95-108.

Kaminsky, P. G., A. E. Bryson, Jr., and S. F. Schmidt, 1971: Discrete square root filtering: a

survey of current techniques. IEE Transactions on Automatic Control, AC-16, 727-736.

Keppenne, C. L., 2000: Data assimilation into a primitive equation model with a parallel ensem-

ble Kalman filter. Mon. Wea. Rev., 128, 1971-1981.

, and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble Kalman

filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. Rev., 130,

2951-2965.

Lacarra, J. F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic

model. Tellus, 40A, 81-95.

Le Dimet, F.-X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of

meteorological observations: theoretical aspects. Tellus, , 38A, 97-110.

46



Lermusiaux, P. F. J., and A. R. Robinson, 1999: Data assimilation via error subspace statistical

estimation. Part 1: theory and schemes. Mon. Wea. Rev., 127, 1385-1407.

Li, Z. and I. M. Navon, 2001: Optimality of variational data assimilation and its relationship

with the Kalman filter and smoother. Quart. J. Roy. Meteor. Soc., 127, 661-683.

Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Me-

teor. Soc., 112, 1177-1194.

Maybeck, P. S., 1979: Stochastic models, estimation, and control. Academic Press, volume 1,

chapter 7, 368-409.

Miller, R. N., E. F. Carter, and S. T. Blue, 1999: Data assimilation into nonlinear stochastic mod-

els. Tellus, 51A, 167-194.

Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea.

Rev., 128, 416-433.

, and , and G. Pellerin, 2002: Ensemble size, balance, and model-error represen-

tation in an ensemble Kalman filter. Mon. Wea. Rev., in press.

Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble predic-

tion system: methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73-119.

Ott, E., B. R. Hunt, I. Szunyogh, M. Corazza, E. Kalnay, D.J. Patil, J. A. Yorke, A. V. Zimin,

and E. J. Kostelich, 2003: Exploiting local low dimensionality of the atmospheric dynamics

for efficient ensemble Kalman filtering. Mon. Wea. Rev., submitted.

Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s Spectral Statistical

Interpolation Analysis System. Mon. Wea. Rev., 120, 1747-1763.

Patil, D. J., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2002: Local low dimensionality of

atmospheric dynamics. Phys. Rev. Lett., 86, 5878-5881.

Penland, C., 2002: A stochastic approach to nonlinear dynamics: a review. Bull. Amer. Meteor.

Soc., accepted.

Pham, D. T., 2001 : Stochastic methods for sequential data assimilation in strongly nonlinear

systems. Mon. Wea. Rev., 129, 1194-1207.

47



Potter, J., 1964: W matrix augmentation. M. I. T. Instrumentation Laboratory Memo SGA 5-64,

Massachusetts Institute of Technology, Cambridge, Massachusetts.

Rabier, F., J.-N. Thepaut, and P. Courtier, 1998: Extended assimilation and forecast experiments

with a four-dimensional variational assimilation system. Quart. J. Roy. Meteor. Soc., 124,

1-39.

, H. Järvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF opera-

tional implementation of four-dimensional variational assimilation. I: experimental results

with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143-1170.

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi, 2002: Hydrologic data assimilation with

the ensemble Kalman filter. Mon. Wea. Rev., 130, 103-114.

Richardson, D. S., 2000: Ensembles using multiple models and analyses. Quart. J. Roy. Me-

teor. Soc., 127, 1847-1864.

Talagrand, O., 1997: Assimilation of observations, an introduction. J. Meteor. Soc. Jap., 75(1B),

191-209.

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2002: Ensemble

square root filters. Mon. Wea. Rev., in press.

Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations.

Bull. Amer. Meteor. Soc., 74, 2317-2330.

, and , 1997: Ensemble forecasting at NCEP and the breeding method. Mon.

Wea. Rev., 12, 3297-3319.

van Leeuwen, P.J., 1999: Comment on “Data assimilation using an ensemble Kalman filter tech-

nique.” Mon. Wea. Rev., 127, 1374-1377.

Verlaan, M. and A. W. Heemink, 2001: Nonlinearity in data assimilation applications. A practi-

cal method for analysis. Mon. Wea. Rev., 129, 1578-1589.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed obseva-

tions. Mon. Wea. Rev., 130, 1913-1924.

48



Ziehmann, C, 2000: Comparison of a single-model EPS with a multi-model ensemble consisting

of a few operational models. Tellus, 52a, 280-299.

49



FIGURE CAPTIONS

Figure 1. Example of Bayesian data assimilation. Here the model state is two dimensional and

a single observation is assimilated. This observation measures the same variable as the first

component of the model state. (a) Probability density for prior joint and marginal distribu-

tions (solid) and sample observation distribution (dashed). (b) Probability density for poste-

rior distributions.

Figure 2. Schematic of the parallel data assimilation cycles in the ensemble Kalman filter, with

each parallel cycle assimilating distinct perturbed observations. Note that the figure is some-

what misleading, in that the information from all ensemble members is input into the update

step for each member, since the ensemble members are used to model background-error co-

variances.

Figure 3. Illustration of the EnKF with a two-dimensional state variable and observations ob-

serving the same as xb
(1). (a) Random samples (black dots) from the probability distribu-

tion in (1). Implied bivariate normal probability background-error covariance distribution

estimated from the ensemble contoured in black, and the observation sampling distribution

(dashed). Solid vertical lines denote individual perturbed observations sampled from this

distribution. The one large black dot and the perturbed observation marked with a star de-

note the sample discussed in the text. (b) Random samples from the EnKF assimilation scheme

(dots) and the implied analysis-error covariance from this sample (solid lines).

Figure 4. (a) Hypothetical data assimilation for two-dimensional state vector with an observa-

tion in only the xb
(1) component. Heavy lines denote the true background error distribution,

or prior (marginal distributions plotted along each axis). Dashed line denotes marginal dis-

tribution for observation. (b) As in (a), but assuming the the background error distribution is

underestimated in magnitude. Note the posterior is shifted very little from the prior. (c) As

in (a), but where correlations between the two components are overestimated, so the poste-

rior of xb
(2) is inappropriately shifted.
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Figure 5. Covariances of ensemble of 300 hPa background temperature forecasts with back-

ground temperature forecasts at grid point marked with dot. Background forecasts are taken

from an ensemble data assimilation system in a low-resolution, dry general circulation model.

Thick solid lines denote ensemble-mean 300 hPa temperature (contours every 5 K). Colors

denote covariances, with deep red colors indicating large positive covariance and blue neg-

ative. (a) Covariances directly from 25-member ensemble; (b) from 100-member ensemble;

(c) from 100-member ensemble with Schur product with correlation function applied.

Figure 6. Locations of observations used in the data assimilation experiment.

Figure 7. Time series of domain-averaged analysis errors in the total-energy norm.

Figure 8. Horizonal map of time-averaged analysis errors in a total-energy norm at 500 hPa.

Time average was computed from days 17.5 to 180 of the time series. Dots again indicate

observation locations.

Figure 9. Examples of ensemble-based covariance estimates. Covariances of 900 hPa tempera-

tures (colored) are shown in the vicinity of four observation locations, denoted by dots. Co-

variances were estimated from 100-member ensemble, with covariance localization applied.

Dashed lines are contours of 900 hPa ensemble mean background temperatures, plotted ev-

ery 5K. Covariances are normalized so that the largest covariance in the figure is assigned a

non-dimensional value of 1.0.

Figure 10. Example of why corrections in ensemble filter can be largest at locations somewhat

distant from the observation. Consider a mistakenly analyzed cold front (dashed line) and

the true state of the front (solid line). If the only observation (dot) is available in a region

outside the frontal zone, a small change in temperature at this location may reasonably im-

ply a much greater correction is appropriate in the nearby frontal zone.
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Figure 1. Example of Bayesian data assimilation. Here the model state is two dimensional and

a single observation is assimilated. This observation measures the same variable as the first

component of the model state. (a) Probability density for prior joint and marginal distribu-

tions (solid) and sample observation distribution (dashed). (b) Probability density for poste-

rior distributions.
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Figure 2. Schematic of the parallel data assimilation cycles in the ensemble Kalman filter, with

each parallel cycle assimilating distinct perturbed observations. Note that the figure is some-

what misleading, in that the information from all ensemble members is input into the update

step for each member, since the ensemble members are used to model background-error co-

variances.
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Figure 3. Illustration of the EnKF with a two-dimensional state variable and observations ob-

serving the same as xb
(1). (a) Random samples (black dots) from the probability distribu-

tion in (1). Implied bivariate normal probability background-error covariance distribution

estimated from the ensemble contoured in black, and the observation sampling distribution

(dashed). Solid vertical lines denote individual perturbed observations sampled from this

distribution. The one large black dot and the perturbed observation marked with a star de-

note the sample discussed in the text. (b) Random samples from the EnKF assimilation scheme

(dots) and the implied analysis-error covariance from this sample (solid lines).
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Figure 4. (a) Hypothetical data assimilation for two-dimensional state vector with an observa-

tion in only the xb
(1) component. Heavy lines denote the true background error distribution,

or prior (marginal distributions plotted along each axis). Dashed line denotes marginal dis-

tribution for observation. (b) As in (a), but assuming the the background error distribution is

underestimated in magnitude. Note the posterior is shifted very little from the prior. (c) As

in (a), but where correlations between the two components are overestimated, so the poste-

rior of xb
(2) is inappropriately shifted.
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Figure 5. Covariances of ensemble of 300 hPa background temperature forecasts with back-

ground temperature forecasts at grid point marked with dot. Background forecasts are taken

from an ensemble data assimilation system in a low-resolution, dry general circulation model.

Thick solid lines denote ensemble-mean 300 hPa temperature (contours every 5 K). Colors

denote covariances, with deep red colors indicating large positive covariance and blue neg-

ative. (a) Covariances directly from 25-member ensemble; (b) from 100-member ensemble;

(c) from 100-member ensemble with Schur product with correlation function applied.
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Figure 6. Locations of observations used in the data assimilation experiment.
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Figure 7. Time series of domain-averaged analysis errors in the total-energy norm.
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Figure 8. Horizonal map of time-averaged analysis errors in a total-energy norm at 500 hPa.

Time average was computed from days 17.5 to 180 of the time series. Dots again indicate

observation locations.
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Figure 9. Examples of ensemble-based covariance estimates. Covariances of 900 hPa tempera-

tures (colored) are shown in the vicinity of four observation locations, denoted by dots. Co-

variances were estimated from 100-member ensemble, with covariance localization applied.

Dashed lines are contours of 900 hPa ensemble mean background temperatures, plotted ev-

ery 5K. Covariances are normalized so that the largest covariance in the figure is assigned a

non-dimensional value of 1.0.
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Figure 10. Example of why corrections in ensemble filter can be largest at locations somewhat

distant from the observation. Consider a mistakenly analyzed cold front (dashed line) and

the true state of the front (solid line). If the only observation (dot) is available in a region

outside the frontal zone, a small change in temperature at this location may reasonably im-

ply a much greater correction is appropriate in the nearby frontal zone.
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